Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Curr Cardiol Rep ; 23(11): 164, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599422

RESUMO

PURPOSE OF REVIEW: Our understanding of the fundamental cellular and molecular factors leading to atrial fibrillation (AF) remains stagnant despite significant advancement in ablation and device technologies. Diagnosis and prevention strategies fall behind that of treatment, but expanding knowledge in AF genetics holds the potential to drive progress. We aim to review how an understanding of the genetic contributions to AF can guide an approach to individualized risk stratification and novel avenues in drug discovery. RECENT FINDINGS: Rare familial forms of AF identified monogenic contributions to the development of AF. Genome-wide association studies (GWAS) further identified single-nucleotide polymorphisms (SNPs) suggesting polygenic and multiplex nature of this common disease. Polygenic risk scores accounting for the multitude of associated SNPs that each confer mildly elevated risk have been developed to translate genetic information into clinical practice, though shortcomings remain. Additionally, novel laboratory methods have been empowered by recent genetic findings to enhance drug discovery efforts. AF is increasingly recognized as a disease with a significant genetic component. With expanding sequencing technologies and accessibility, polygenic risk scores can help identify high risk individuals. Advancement in digital health tools, artificial intelligence and machine learning based on standard electrocardiograms, and genomic driven drug discovery may be integrated to deliver a sophisticated level of precision medicine in this modern era of emphasis on prevention. Randomized, prospective studies to demonstrate clinical benefits of these available tools are needed to validate this approach.


Assuntos
Fibrilação Atrial , Inteligência Artificial , Fibrilação Atrial/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Estudos Prospectivos
3.
BMC Med Educ ; 21(1): 36, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413297

RESUMO

BACKGROUND: Africa's economic transformation relies on a radical transformation of its higher education institutions. The establishment of regional higher education Centres of Excellence (CoE) across Africa through a World Bank support aims to stimulate the needed transformation in education and research. However, excellence is a vague, and often indiscriminately used concept in academic circles. More importantly, the manner in which aspiring institutions can achieve academic excellence is described inadequately. The main objective of this paper is to describe the core processes of excellence as a prerequisite to establishing academic CoE in Africa. METHODS: The paper relies on our collaborative discussions and real-world insight into the pursuit of academic excellence, a narrative review using Pubmed search for a contextual understanding of CoEs in Africa supplemented by a Google search for definitions of CoEs in academic contexts. RESULTS: We identified three key, synergistic processes of excellence central to institutionalizing academic CoEs: participatory leadership, knowledge management, and inter-disciplinary collaboration. (1) Participatory leadership encourages innovations to originate from the different parts of the organization, and facilitates ownership as well as a culture of excellence. (2) Centers of Excellence are future-oriented in that they are constantly seeking to achieve best practices, informed by the most up-to-date and cutting-edge research and information available. As such, the process by which centres facilitate the flow of knowledge within and outside the organization, or knowledge management, is critical to their success. (3) Such centres also rely on expertise from different disciplines and 'engaged' scholarship. This multidisciplinarity leads to improved research productivity and enhances the production of problem-solving innovations. CONCLUSION: Participatory leadership, knowledge management, and inter-disciplinary collaborations are prerequisites to establishing academic CoEs in Africa. Future studies need to extend our findings to understand the processes key to productivity, competitiveness, institutionalization, and sustainability of academic CoEs in Africa.


Assuntos
Bolsas de Estudo , Liderança , África , Humanos , Inquéritos e Questionários , Universidades
4.
J Pharmacol Exp Ther ; 371(2): 299-308, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31537613

RESUMO

Target-engagement pharmacodynamic (PD) biomarkers are valuable tools in the prioritization of drug candidates, especially for novel, first-in-class mechanisms whose robustness to alter disease outcome is unknown. Methionine aminopeptidase 2 (MetAP2) is a cytosolic metalloenzyme that cleaves the N-terminal methionine from nascent proteins. Inhibition of MetAP2 leads to weight loss in obese rodents, dogs and humans. However, there is a need to develop efficacious compounds that specifically inhibit MetAP2 with an improved safety profile. The objective of this study was to identify a PD biomarker for selecting potent, efficacious compounds and for predicting clinical efficacy that would result from inhibition of MetAP2. Here we report the use of NMet14-3-3γ for this purpose. Treatment of primary human cells with MetAP2 inhibitors resulted in an approx. 10-fold increase in NMet14-3-3γ levels. Furthermore, treatment of diet-induced obese mice with these compounds reduced body weight (approx. 20%) and increased NMet14-3-3γ (approx. 15-fold) in adipose tissues. The effects on target engagement and body weight increased over time and were dependent on dose and administration frequency of compound. The relationship between compound concentration in plasma, NMet14-3-3γ in tissue, and reduction of body weight in obese mice was used to generate a pharmacokinetic-pharmacodynamic-efficacy model for predicting efficacy of MetAP2 inhibitors in mice. We also developed a model for predicting weight loss in humans using a target engagement PD assay that measures inhibitor-bound MetAP2 in blood. In summary, MetAP2 target engagement biomarkers can be used to select efficacious compounds and predict weight loss in humans. SIGNIFICANCE STATEMENT: The application of target engagement pharmacodynamic biomarkers during drug development provides a means to determine the dose required to fully engage the intended target and an approach to connect the drug target to physiological effects. This work exemplifies the process of using target engagement biomarkers during preclinical research to select new drug candidates and predict clinical efficacy. We determine concentration of MetAP2 antiobesity compounds needed to produce pharmacological activity in primary human cells and in target tissues from an appropriate animal model and establish key relationships between pharmacokinetics, pharmacodynamics, and efficacy, including the duration of effects after drug administration. The biomarkers described here can aid decision-making in early clinical trials of MetAP2 inhibitors for the treatment of obesity.


Assuntos
Clorobenzenos/farmacologia , Cinamatos/farmacologia , Cicloexanos/farmacologia , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metionil Aminopeptidases/antagonistas & inibidores , Metionil Aminopeptidases/metabolismo , Sesquiterpenos/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Biomarcadores/metabolismo , Clorobenzenos/química , Cinamatos/química , Cicloexanos/química , Relação Dose-Resposta a Droga , Compostos de Epóxi/química , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Valor Preditivo dos Testes , Sesquiterpenos/química , Resultado do Tratamento
5.
Sci Rep ; 9(1): 10811, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346210

RESUMO

NOTCH plays a pivotal role during normal development and in congenital disorders and cancer. γ-secretase inhibitors are commonly used to probe NOTCH function, but also block processing of numerous other proteins. We discovered a new class of small molecule inhibitor that disrupts the interaction between NOTCH and RBPJ, which is the main transcriptional effector of NOTCH signaling. RBPJ Inhibitor-1 (RIN1) also blocked the functional interaction of RBPJ with SHARP, a scaffold protein that forms a transcriptional repressor complex with RBPJ in the absence of NOTCH signaling. RIN1 induced changes in gene expression that resembled siRNA silencing of RBPJ rather than inhibition at the level of NOTCH itself. Consistent with disruption of NOTCH signaling, RIN1 inhibited the proliferation of hematologic cancer cell lines and promoted skeletal muscle differentiation from C2C12 myoblasts. Thus, RIN1 inhibits RBPJ in its repressing and activating contexts, and can be exploited for chemical biology and therapeutic applications.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
6.
J Biol Chem ; 294(24): 9567-9575, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31048375

RESUMO

Inhibitors of methionine aminopeptidase 2 (MetAP2) have been shown to reduce body weight in obese mice and humans. The target tissue and cellular mechanism of MetAP2 inhibitors, however, have not been extensively examined. Using compounds with diverse chemical scaffolds, we showed that MetAP2 inhibition decreases body weight and fat mass and increases lean mass in the obese mice but not in the lean mice. Obesity is associated with catecholamine resistance and blunted ß-adrenergic receptor signaling activities, which could dampen lipolysis and energy expenditure resulting in weight gain. In the current study, we examined effect of MetAP2 inhibition on brown adipose tissue and brown adipocytes. Norepinephrine increases energy expenditure in brown adipose tissue by providing fatty acid substrate through lipolysis and by increasing expression of uncoupled protein-1 (UCP1). Metabolomic analysis shows that in response to MetAP2 inhibitor treatment, fatty acid metabolites in brown adipose tissue increase transiently and subsequently decrease to basal or below basal levels, suggesting an effect on fatty acid metabolism in this tissue. Treatment of brown adipocytes with MetAP2 inhibitors enhances norepinephrine-induced lipolysis and energy expenditure, and prolongs the activity of norepinephrine to increase ucp1 gene expression and energy expenditure in norepinephrine-desensitized brown adipocytes. In summary, we showed that the anti-obesity activity of MetAP2 inhibitors can be mediated, at least in part, through direct action on brown adipocytes by enhancing ß-adrenergic-signaling-stimulated activities.


Assuntos
Adipócitos Marrons/fisiologia , Aminopeptidases/antagonistas & inibidores , Peso Corporal/efeitos dos fármacos , Clorobenzenos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metaloendopeptidases/antagonistas & inibidores , Obesidade/prevenção & controle , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Animais , Humanos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ratos , Transdução de Sinais , Termogênese
7.
Handb Exp Pharmacol ; 251: 381-424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689089

RESUMO

Human brown adipose tissue (BAT) is experimentally modeled to better understand the biology of this important metabolic tissue, and also to enable the potential discovery and development of novel therapeutics for obesity and sequelae resulting from the persistent positive energy balance. This chapter focuses on translation into humans of findings and hypotheses generated in nonhuman models of BAT pharmacology. Given the demonstrated challenges of sustainably reducing caloric intake in modern humans, potential solutions to obesity likely lie in increasing energy expenditure. The energy-transforming activities of a single cell in any given tissue can be conceptualized as a flow of chemical energy from energy-rich substrate molecules into energy-expending, endergonic biological work processes through oxidative degradation of organic molecules ingested as nutrients. Despite the relatively tight coupling between metabolic reactions and products, some expended energy is incidentally lost as heat, and in this manner a significant fraction of the energy originally captured from the environment nonproductively transforms into heat rather than into biological work. In human and other mammalian cells, some processes are even completely uncoupled, and therefore purely energy consuming. These molecular and cellular actions sum up at the physiological level to adaptive thermogenesis, the endogenous physiology in which energy is nonproductively released as heat through uncoupling of mitochondria in brown fat and potentially skeletal muscle. Adaptive thermogenesis in mammals occurs in three forms, mostly in skeletal muscle and brown fat: shivering thermogenesis in skeletal muscle, non-shivering thermogenesis in brown fat, and diet-induced thermogenesis in brown fat. At the cellular level, the greatest energy transformations in humans and other eukaryotes occur in the mitochondria, where creating energetic inefficiency by uncoupling the conversion of energy-rich substrate molecules into ATP usable by all three major forms of biological work occurs by two primary means. Basal uncoupling occurs as a passive, general, nonspecific leak down the proton concentration gradient across the membrane in all mitochondria in the human body, a gradient driving a key step in ATP synthesis. Inducible uncoupling, which is the active conduction of protons across gradients through processes catalyzed by proteins, occurs only in select cell types including BAT. Experiments in rodents revealed UCP1 as the primary mammalian molecule accounting for the regulated, inducible uncoupling of BAT, and responsive to both cold and pharmacological stimulation. Cold stimulation of BAT has convincingly translated into humans, and older clinical observations with nonselective 2,4-DNP validate that human BAT's participation in pharmacologically mediated, though nonselective, mitochondrial membrane decoupling can provide increased energy expenditure and corresponding body weight loss. In recent times, however, neither beta-adrenergic antagonism nor unselective sympathomimetic agonism by ephedrine and sibutramine provide convincing evidence that more BAT-selective mechanisms can impact energy balance and subsequently body weight. Although BAT activity correlates with leanness, hypothesis-driven selective ß3-adrenergic agonism to activate BAT in humans has only provided robust proof of pharmacologic activation of ß-adrenergic receptor signaling, limited proof of the mechanism of increased adaptive thermogenesis, and no convincing evidence that body weight loss through negative energy balance upon BAT activation can be accomplished outside of rodents. None of the five demonstrably ß3 selective molecules with sufficient clinical experience to merit review provided significant weight loss in clinical trials (BRL 26830A, TAK 677, L-796568, CL 316,243, and BRL 35135). Broader conclusions regarding the human BAT therapeutic hypothesis are limited by the absence of data from most studies demonstrating specific activation of BAT thermogenesis in most studies. Additionally, more limited data sets with older or less selective ß3 agonists also did not provide strong evidence of body weight effects. Encouragingly, ß3-adrenergic agonists, catechins, capsinoids, and nutritional extracts, even without robust negative energy balance outcomes, all demonstrated increased total energy expenditure that in some cases could be associated with concomitant activation of BAT, though the absence of body weight loss indicates that in no cases did the magnitude of negative energy balance reach sufficient levels. Glucocorticoid receptor agonists, PPARg agonists, and thyroid hormone receptor agonists all possess defined molecular and cellular pharmacology that preclinical models predicted to be efficacious for negative energy balance and body weight loss, yet their effects on human BAT thermogenesis upon translation were inconsistent with predictions and disappointing. A few new mechanisms are nearing the stage of clinical trials and may yet provide a more quantitatively robust translation from preclinical to human experience with BAT. In conclusion, translation into humans has been demonstrated with BAT molecular pharmacology and cell biology, as well as with physiological response to cold. However, despite pharmacologically mediated, statistically significant elevation in total energy expenditure, translation into biologically meaningful negative energy balance was not achieved, as indicated by the absence of measurable loss of body weight over the duration of a clinical study.


Assuntos
Tecido Adiposo Marrom , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Animais , Peso Corporal , Metabolismo Energético , Humanos , Obesidade , Termogênese/fisiologia
8.
Mol Metab ; 20: 89-101, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553772

RESUMO

OBJECTIVE: Atherosclerosis is a major cause of cardiovascular disease. Monocyte-endothelial cell interactions are partly mediated by expression of monocyte CX3CR1 and endothelial cell fractalkine (CX3CL1). Interrupting the interaction between this ligand-receptor pair should reduce monocyte binding to the endothelial wall and reduce atherosclerosis. We sought to reduce atherosclerosis by preventing monocyte-endothelial cell interactions through use of a long-acting CX3CR1 agonist. METHODS: In this study, the chemokine domain of CX3CL1 was fused to the mouse Fc region to generate a long-acting soluble form of CX3CL1 suitable for chronic studies. CX3CL1-Fc or saline was injected twice a week (30 mg/kg) for 4 months into Ldlr knockout (KO) mice on an atherogenic western diet. RESULTS: CX3CL1-Fc-treated Ldlr KO mice showed decreased en face aortic lesion surface area and reduced aortic root lesion size with decreased necrotic core area. Flow cytometry analyses of CX3CL1-Fc-treated aortic wall cell digests revealed a decrease in M1-like polarized macrophages and T cells. Moreover, CX3CL1-Fc administration reduced diet-induced atherosclerosis after switching from an atherogenic to a normal chow diet. In vitro monocyte adhesion studies revealed that CX3CL1-Fc treatment caused fewer monocytes to adhere to a human umbilical vein endothelial cell monolayer. Furthermore, a dorsal window chamber model demonstrated that CX3CL1-Fc treatment decreased in vivo leukocyte adhesion and rolling in live capillaries after short-term ischemia-reperfusion. CONCLUSION: These results indicate that CX3CL1-Fc can inhibit monocyte/endothelial cell adhesion as well as reduce atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Quimiocina CX3CL1/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/prevenção & controle , Células Cultivadas , Quimiocina CX3CL1/genética , Fragmentos Fc das Imunoglobulinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/prevenção & controle , Receptores de LDL/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
9.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29504946

RESUMO

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Assuntos
Glicemia/metabolismo , Quimiocina CX3CL1/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Glicemia/genética , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Quimiocina CX3CL1/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Fragmentos Fc das Imunoglobulinas/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética
10.
Biosci Rep ; 37(3)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28592559

RESUMO

Prolyl hydroxylases (PHDs) down-regulate the level of hypoxia-inducible factors (HIFs) by hydroxylating key proline residues that trigger the degradation of the protein and affect the cell and its ability to respond to hypoxic stress. Several small molecule PHD inhibitors are now in various preclinical and clinical stages for the treatment of anemia. The present study provides a detail kinetic analysis for some of these inhibitors. The data generated in the present study suggest that these compounds are reversible and compete directly with the co-substrate, 2-oxoglutarate (2-OG) for binding at the enzyme active site. Most of these compounds are pan PHD inhibitors and exhibit a time-dependent inhibition (TDI) mechanism due to an extremely slow dissociation rate constant, koff, and a long residence time.


Assuntos
Inibidores Enzimáticos/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Domínio Catalítico , Inibidores Enzimáticos/química , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química
11.
Circ Heart Fail ; 10(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28356300

RESUMO

The increasing burden and the continued suboptimal outcomes for patients with heart failure underlines the importance of continued research to develop novel therapeutics for this disorder. This can only be accomplished with successful translation of basic science discoveries into direct human application through effective clinical trial design and execution that results in a substantially improved clinical course and outcomes. In this respect, phase II clinical trials play a pivotal role in determining which of the multitude of potential basic science discoveries should move to the large and expansive registration trials in humans. A critical examination of the phase II trials in heart failure reveals multiple shortcomings in their concept, design, execution, and interpretation. To further a dialogue on the challenges and potential for improvement and the role of phase II trials in patients with heart failure, the Food and Drug Administration facilitated a meeting on October 17, 2016, represented by clinicians, researchers, industry members, and regulators. This document summarizes the discussion from this meeting and provides key recommendations for future directions.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Ensaios Clínicos Fase II como Assunto/normas , Insuficiência Cardíaca/tratamento farmacológico , Projetos de Pesquisa/normas , Fármacos Cardiovasculares/efeitos adversos , Ensaios Clínicos Fase II como Assunto/métodos , Consenso , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration
12.
Circ Heart Fail ; 9(5)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27166246

RESUMO

Compared with heart failure (HF) care 20 to 30 years ago, there has been tremendous advancement in therapy for ambulatory HF with reduced ejection fraction with the use of agents that block maladaptive neurohormonal pathways. However, during the past decade, with few notable exceptions, the frequency of successful drug development programs has fallen as most novel therapies have failed to offer incremental benefit or raised safety concerns (ie, hypotension). Moreover, no therapy has been approved specifically for HF with preserved ejection fraction or for worsening chronic HF (including acutely decompensated HF). Across the spectrum of HF, preliminary results from many phase II trials have been promising but are frequently followed by unsuccessful phase III studies, highlighting a disconnect in the translational process between basic science discovery, early drug development, and definitive clinical testing in pivotal trials. A major unmet need in HF drug development is the ability to identify homogeneous subsets of patients whose underlying disease is driven by a specific mechanism that can be targeted using a new therapeutic agent. Drug development strategies should increasingly consider therapies that facilitate reverse remodeling by directly targeting the heart itself rather than strictly focusing on agents that unload the heart or target systemic neurohormones. Advancements in cardiac imaging may allow for more focused and direct assessment of drug effects on the heart early in the drug development process. To better understand and address the array of challenges facing current HF drug development, so that future efforts may have a better chance for success, the Food and Drug Administration facilitated a meeting on February 17, 2015, which was attended by clinicians, researchers, regulators, and industry representatives. The following discussion summarizes the key takeaway dialogue from this meeting.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Coração/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Fármacos Cardiovasculares/efeitos adversos , Difusão de Inovações , Descoberta de Drogas/tendências , Previsões , Coração/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Transdução de Sinais/efeitos dos fármacos
13.
Handb Exp Pharmacol ; 233: 283-99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25903412

RESUMO

The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/fisiologia , GMP Cíclico/fisiologia , Adipócitos/fisiologia , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Mitocôndrias/fisiologia , Obesidade/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Circ Res ; 116(9): 1527-39, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908726

RESUMO

Patients with peripheral artery disease have a marked reduction in exercise performance and daily ambulatory activity irrespective of their limb symptoms of classic or atypical claudication. This review will evaluate the multiple pathophysiologic mechanisms underlying the exercise impairment in peripheral artery disease based on an evaluation of the current literature and research performed by the authors. Peripheral artery disease results in atherosclerotic obstructions in the major conduit arteries supplying the lower extremities. This arterial disease process impairs the supply of oxygen and metabolic substrates needed to match the metabolic demand generated by active skeletal muscle during walking exercise. However, the hemodynamic impairment associated with the occlusive disease process does not fully account for the reduced exercise impairment, indicating that additional pathophysiologic mechanisms contribute to the limb manifestations. These mechanisms include a cascade of pathophysiological responses during exercise-induced ischemia and reperfusion at rest that are associated with endothelial dysfunction, oxidant stress, inflammation, and muscle metabolic abnormalities that provide opportunities for targeted therapeutic interventions to address the complex pathophysiology of the exercise impairment in peripheral artery disease.


Assuntos
Exercício Físico/fisiologia , Claudicação Intermitente/fisiopatologia , Extremidade Inferior/fisiopatologia , Músculo Esquelético/fisiopatologia , Doença Arterial Periférica/fisiopatologia , Índice Tornozelo-Braço , Hemodinâmica/fisiologia , Humanos , Claudicação Intermitente/terapia , Extremidade Inferior/irrigação sanguínea , Modelos Cardiovasculares , Músculo Esquelético/irrigação sanguínea , Doença Arterial Periférica/terapia
15.
Expert Rev Endocrinol Metab ; 9(1): 1-3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30743733

RESUMO

Despite significant advances in diabetes care since the introductions of insulin and metformin, disease burden continues to grow. Large gaps in standard of care remain, and no robustly disease-modifying pharmacotherapy exists. Substantial research has been directed towards beta cell preservation and regeneration with no translational success, while little drug discovery or development is aimed at the other major cause of diabetes, namely, insulin resistance. Given the absence of convincing evidence that human beta cells can be regenerated, the diabetes community must broaden its focus to include new therapeutic strategies to limit, and reverse, insulin resistance.

16.
J Med Chem ; 55(9): 4322-35, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22497444

RESUMO

Targeting glycosphingolipid synthesis has emerged as a novel approach for treating metabolic diseases. 32 (EXEL-0346) represents a new class of glucosylceramide synthase (GCS) inhibitors. This report details the elaboration of hit 8 with the goal of achieving and maintaining maximum GCS inhibition in vivo. 32 inhibited GCS with an IC(50) of 2 nM and achieved maximum hepatic GCS inhibition after four or five daily doses in rodents. Robust improvements in glucose tolerance in DIO mice and ZDF rats were observed after 2 weeks of q.d. dosing. Four weeks of dosing resulted in decreased plasma triglycerides and reduced hepatic fat deposition. Thus, 32 provides insight into the amount of metabolic regulation that can be restored following achievement of maximal target knockdown.


Assuntos
Inibidores Enzimáticos/síntese química , Glucosiltransferases/antagonistas & inibidores , Fenilalanina/análogos & derivados , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Gangliosídeos/metabolismo , Teste de Tolerância a Glucose , Glucosiltransferases/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fenilalanina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Relação Estrutura-Atividade , Triglicerídeos/sangue
17.
Surg Obes Relat Dis ; 7(1): 94-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21126928

RESUMO

BACKGROUND: The Bariatric Analysis and Reporting Outcome System (BAROS) uses a point scale (maximal score of 9) to evaluate weight loss, complications, improvement in medical conditions, and quality of life among postoperative bariatric patients. The BAROS was originally developed to address the need for a standardized method of reporting open gastric bypass outcomes and has been shown to be both valid and reliable. BAROS scores >7 are considered "excellent." Our objective was to assess the overall BAROS scores in patients undergoing laparoscopic Roux-en-Y gastric bypass at each postoperative follow-up interval and to examine the effect of age and gender on BAROS scores. METHODS: A total of 700 patients who had undergone LRYGB were asked to complete a BAROS questionnaire at their postoperative visits. The BAROS scores were recorded in a prospective database. The patients were stratified by their initial age and body mass index. The statistical analysis included analysis of variance. P <.05 was considered significant. RESULTS: The mean BAROS score peaked at 7.29 at the 18-month appointment. More than one half of the patients presenting for follow-up visits at 12, 18, 24, and 36 months had BAROS scores in the "excellent" range. Age stratification (20-29, 30-39, 40-49, and ≥ 50 years) resulted in significant differences at 3, 6, 9, 12, and 18 months postoperatively. When stratified by the initial body mass index, differences were seen at 3 weeks and 3, 6, 9, and 12 months postoperatively. CONCLUSION: Patients with a lower initial body mass index had greater BAROS scores at many of the follow-up intervals. Laparoscopic Roux-en-Y gastric bypass effectively improved the overall health and quality of life of patients.


Assuntos
Atividades Cotidianas , Índice de Massa Corporal , Derivação Gástrica/métodos , Laparoscopia , Obesidade Mórbida/cirurgia , Qualidade de Vida , Adulto , Idoso , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Inquéritos e Questionários , Resultado do Tratamento , Redução de Peso , Adulto Jovem
18.
Bioorg Med Chem Lett ; 20(16): 4819-24, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20663667

RESUMO

We have optimized a novel series of potent p38 MAP kinase inhibitors based on an alpha-ketoamide scaffold through structure based design that due to their extended molecular architecture bind, in addition to the ATP site, to an allosteric pocket. In vitro ADME, in vivo PK and efficacy studies show these compounds to have drug-like characteristics and have resulted in the nomination of a development candidate which is currently in phase II clinical trials for the oral treatment of inflammatory conditions.


Assuntos
Amidas/química , Anti-Inflamatórios não Esteroides/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Administração Oral , Sítio Alostérico , Amidas/síntese química , Amidas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacocinética , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Eur J Pharmacol ; 632(1-3): 93-102, 2010 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-20132813

RESUMO

The tumor necrosis factor-alpha (TNF-alpha) cytokine, secreted by activated monocytes/macrophages and T lymphocytes, is implicated in several diseases, including rheumatoid arthritis, chronic obstructive pulmonary disease, inflammatory bowel disease, and osteoporosis. Monocyte/macrophage production of TNF-alpha is largely driven by p38alpha mitogen-activated protein kinase (MAP kinase), an intracellular soluble serine-threonine kinase. p38alpha MAP kinase is activated by growth factors, cellular stresses, and cytokines such as TNF-alpha and interleukin-l (IL-I). The primary contribution of p38alpha activation to excess TNF-alpha in settings of both chronic and acute inflammation has instigated efforts to find inhibitors of this enzyme as possible therapies for associated disease states. Analogue design, synthesis, and structure-activity studies led to the identification of 5-tert-butyl-N-cyclopropyl-2-methoxy-3-{2-[4-(2-morpholin-4-yl-ethoxy)-naphthalen-1-yl]-2-oxo-acetylamino}-benzamide (KR-003048) as a potent inhibitor of the p38 MAP kinase signaling pathway in vitro and in vivo. The inhibition in vitro of human p38alpha enzyme activity and lipopolysaccharide (LPS)-induced p38 activation and subsequent TNF-alpha release is described. KR-00348 was demonstrated to be a potent inhibitor of inflammatory cytokine production ex vivo in rat and human whole blood, and showed good oral bioavailability. Additionally, efficacy in mouse and rat models of acute and chronic inflammation was obtained. KR-003048 possessed therapeutic activity in acute models, demonstrating substantial inhibition of carrageenan-induced paw edema and in vivo LPS-induced TNF release at 30mg/kg p.o. Collagen-induced arthritis in mice was significantly inhibited by 10 and 30mg/kg doses of KR-003048. Evidence for disease-modifying activity in this model was indicated by histological evaluation of joints.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Administração Oral , Animais , Artrite Reumatoide/tratamento farmacológico , Benzamidas/antagonistas & inibidores , Benzamidas/química , Células Cultivadas , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/metabolismo , Masculino , Modelos Químicos , Modelos Imunológicos , Modelos Moleculares , Monócitos/metabolismo , Morfolinas/antagonistas & inibidores , Morfolinas/química , Osteoporose/tratamento farmacológico , Osteoporose/imunologia , Osteoporose/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 29(12): 2054-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19815817

RESUMO

OBJECTIVE: Increasing HDL levels is a potential strategy for the treatment of atherosclerosis. METHODS AND RESULTS: ITX5061, a molecule initially characterized as a p38 MAPK inhibitor, increased HDL-C levels by 20% in a human population of hypertriglyceridemic subjects with low HDL levels. ITX5061 also moderately increased apoA-I but did not affect VLDL/LDL cholesterol or plasma triglyceride concentrations. ITX5061 increased HDL-C in WT and human apoA-I transgenic mice, and kinetic experiments showed that ITX5061 decreased the fractional catabolic rate of HDL-CE and reduced its hepatic uptake. In transfected cells, ITX5061 inhibited SR-BI-dependent uptake of HDL-CE. Moreover, ITX5061 failed to increase HDL-C levels in SR-BI(-/-) mice. To assess effects on atherosclerosis, ITX5061 was given to atherogenic diet-fed Ldlr(+/-) mice with or without CETP expression for 18 weeks. In both the control and CETP-expressing groups, ITX5061-treated mice displayed reductions of early atherosclerotic lesions in the aortic arch -40%, P<0.05), and a nonsignificant trend to reduced lesion area in the proximal aorta. CONCLUSIONS: Our data indicate that ITX5061 increases HDL-C levels by inhibition of SR-BI activity. This suggests that pharmacological inhibition of SR-BI has the potential to raise HDL-C and apoA-I levels without adverse effects on VLDL/LDL cholesterol levels in humans.


Assuntos
Apolipoproteína A-I/sangue , Aterosclerose/prevenção & controle , HDL-Colesterol/sangue , Fenilenodiaminas/farmacologia , Receptores Depuradores Classe B/antagonistas & inibidores , Sulfonamidas/farmacologia , Idoso , Animais , Apolipoproteína A-I/genética , Aterosclerose/sangue , Aterosclerose/etiologia , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Ésteres do Colesterol/sangue , Dieta Aterogênica , Método Duplo-Cego , Feminino , Humanos , Lipoproteínas HDL/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...